Gatheral 60, September October 13, 2017

Some remarks on VIX futures and ETNs

Marco Avellaneda Courant Institute, New York University

Joint work with Andrew Papanicolaou, NYU-Tandon Engineering

Outline

- VIX Time-Series: Stylized facts/Statistics
- VIX Futures: Stylized facts/Statistics
- VIX ETNS (VXX, XIV) synthetic (futures, notes)
- Modeling the VIX curve and implications to ETN trading/investing

The CBOE S&P500 Implied Volatility Index (VIX)

• Inspired by Variance Swap Volatility (Whaley, 90's)

$$\sigma_T^2 = \frac{2e^{rT}}{T} \int_0^\infty OTM(K, T, S) \frac{dK}{K^2}$$

- Here OTM(K, T, S) represents the value of the OTM (forward) option with strike K, or ATM if S=F.
- In 2000, CBOE created a discrete version of the VSV in which the sum replaces the integral and the maturity is 30 days. Since there are no 30 day options, VIX uses first two maturities*

$$VIX = \sqrt{w_1 \sum_{i=1}^{n} OTM(K_i, T_1, S) \frac{\Delta K}{K_i^2} + w_2 \sum_i OTM(K_i, T_2, S) \frac{\Delta K}{K_i^2}}$$

* My understanding is that recently they could have added more maturities using weekly options as well.

VIX: Jan 1990 to July 2017

 VIX Absolute Levels Histogram

VIX Descriptive Statistics

VIX Descriptive Stats			
Mean	19.51195		
Standard Error	0.094278		
Median	17.63		
Mode	11.57		
Standard Deviation	7.855663		
Sample Variance	61.71144		
Kurtosis	7.699637		
Skewness	2.1027		
Minimum	9.31		
Maximum	80.86		

- Definitely heavy tails
- ``Vol risk premium theory'' implies long-dated futures prices should be above the average VIX.
- This implies that the typical futures curve should be upward sloping (contango) since mode<average

Is VIX a stationary process (mean-reverting)? Yes and no...

- Augmented Dickey-Fuller test **rejects unit root** if we consider data since 1990. MATLAB adftest(): DFstat=-3.0357; critical value CV= -1.9416; p-value=0.0031.
- Shorter time-windows, which don't include 2008, **do not reject unit root**
- Non-parametric approach (2-sample KS test) rejects unit root if 2008 is included.

VIX Futures (symbol:VX)

- Contract notional value = $VX \times 1,000$
- Tick size= 0.05 (USD 50 dollars)
- Settlement price = VIX \times 1,000
- Monthly settlements, on Wednesday at 8AM, prior to the 3rd Friday (classical option expiration date)
- Exchange: Chicago Futures Exchange (CBOE)
- Cash-settled (obviously)

- Each VIX futures covers 30 days of volatility after the settlement date.
- Settlement dates are 1 month apart.
- Recently, weekly settlements have been added in the first two months.

Note: Recently introduced weeklies are illiquid and should not be used to build CMF curve

vixcentral.com

Partial Backwardation: French election, 1st round

vixcentral.com

Term-structures before & after French election

VIX futures: Lehman week, and 2 months later

vixcentral.com

A stylized description of the VIX futures cycle

Start here

- Markets are ``quiet'', volatility is low , VIX term structure is in contango (i.e. upward sloping)
- Risk on: the possibility of market becoming more risky arises; 30-day S&P implied vols rise
- VIX spikes, CMF flattens in the front , then curls up, eventually going into backwardation
- Backwardation is usually partial (CMF decreases only for short maturities), but can be total in extreme cases (2008)
- Risk-off: uncertainty resolves itself, CMF drops and steepens
- Most likely state (contango) is restored

End here

Statistics of VIX Futures Curves

• Constant-maturity futures, V^{τ} , linearly interpolating quoted futures prices

$$V_t^{\tau} = \frac{\tau_{k+1} - \tau}{\tau_{k+1} - \tau_k} V X_k(t) + \frac{\tau - \tau_k}{\tau_{k+1} - \tau_k} V X_{k+1}(t)$$

 VX_k (t)= kth futures price on date t, VX_0 = VIX, $\tau_0 = 0$, τ_k = tenor of kth futures

Historical volatility of VX Futures X-axis: days (0=VIX). Y-axis=daily volatility (annualized)

PCA: fluctuations from average position

- Select standard tenors τ_k , k = 0, 30, 60, 90, 120, 150, 180, 210
- Dates: Feb 8 2011 to Dec 15 2016

$$lnV_{t_i}^{\tau_k} = \overline{lnV^{\tau_k}} + \sum_{l=1}^8 a_{il}\Psi_l^k$$

• Slightly different from Alexander and Korovilas (2010) who did the PCA of 1-day log-returns.

Eigenvalue	% variance expl
1	72
2	18
3	6
4	1
5 to 8	<1

ETFs/ETNs based on futures

• Funds track an ``investable index", corresponding to a rolling futures strategy

• Fund invests in a basket of futures contracts

$$\frac{dI}{I} = r \, dt + \sum_{i=1}^{N} a_i \, \frac{dF_i}{F_i}$$

 a_i = fraction (%) of assets in ith future

• Normalization of weights for leverage:

$$\sum_{i=1}^N a_i = \beta,$$

 β = leverage coefficient

Average maturity of futures is fixed

• Assume $\beta = 1$, let b_i = fraction of **total number of contracts** invested in ith futures:

$$b_i = \frac{n_i}{\sum n_j} = \frac{I a_i}{F_i}.$$

• The average maturity θ is typically fixed, resulting in a rolling strategy.

$$\theta = \sum_{i=1}^{N} b_i \left(T_i - t \right) = \sum_{i=1}^{N} b_i \tau_i$$

Example 1: VXX (maturity = 1M, long futures, daily rolling)

$$\frac{dI}{I} = rdt + \frac{b(t)dF_1 + (1 - b(t))dF_2}{b(t)F_1 + (1 - b(t))F_2}$$

Weights are based on 1-M CMF , no leverage

$$b(t) = \frac{T_2 - t - \theta}{T_2 - T_1}$$

 $\theta = 1 \text{ month} = 30/360$

Notice that since

$$V_t^{\theta} = b(t)F_1 + (1 - b(t))F_2$$

$$dV_t^{\theta} = b(t)dF_1 + (1 - b(t))dF_2 + b'(t)F_1 - b'(t)F_2$$

$$\frac{dV_t^{\theta}}{V_t^{\theta}} = \frac{b(t)dF_1 + (1 - b(t))dF_2}{b(t)F_1 + (1 - b(t))F_2} + \frac{F_2 - F_1}{b(t)F_1 + (1 - b(t))F_2}\frac{dt}{T_2 - T_1}$$

Hence

Dynamic link between Index and CMF equations (long 1M CMF, daily rolling)

$$\frac{dI}{I} = rdt + \frac{b(t)dF_1 + (1 - b(t))dF_2}{b(t)F_1 + (1 - b(t))F_2}$$

$$= r dt + \frac{dV_t^{\theta}}{V_t^{\theta}} - \frac{F_2 - F_1}{b(t)F_1 + (1 - b(t))F_2} \frac{dt}{T_2 - T_1}$$

$$\frac{dI}{I} = r \, dt + \frac{dV_t^{\theta}}{V_t^{\theta}} - \frac{\partial \ln V_t^{\tau}}{\partial \tau} \bigg|_{\tau=\theta} \, dt$$

Slope of the CMF is the relative drift between index and CMF

Example 2 : XIV, Short 1-M rolling futures

This is a fund that follows a DAILY rolling strategy, sells futures, targets 1-month maturity

$$\frac{dJ}{J} = r \, dt - \frac{dV_t^{\theta}}{V_t^{\theta}} + \left. \frac{\partial \ln V_t^{\tau}}{\partial \tau} \right|_{\tau=\theta} dt$$

$$\theta = 1 \text{ month} = 30/360$$

In order to maintain average maturities/leverage, funds must ``reload'' on futures, which keep tending to spot VIX and then expire. Under contango, long ETNs decay, short ETNs increase.

Stationarity/ergodicity of CMF and consequences

Integrating the *I*-equation for VXX and the corresponding *J*-equation for XIV (inverse):

$$VXX_0 - e^{-rt} VXX_t = VXX_0 \left[1 - \frac{V_t^{\tau}}{V_0^{\tau}} exp\left(-\int_0^t \frac{\partial \ln V_s^{\theta} ds}{\partial \tau} \right) \right]$$

$$e^{-rt} XIV_t - XIV_0 = XIV_0 \left[\frac{V_0^{\tau}}{V_t^{\tau}} exp\left(\int_0^t \frac{\partial \ln V_s^{\theta} ds}{\partial \tau} \right) - 1 \right]$$

Proposition: If VIX is stationary and ergodic, and $E\left(\frac{\partial \ln V_s^{\theta}}{\partial \tau}\right) > 0$, static buy-and-hold XIV or short-and-hold VXX produce sure profits in the long run, with probability 1.

iPath S&P 500 VIX ST Futures ETN (VXX) 42.82 -0.78 (-1.79%) As of September 15 4:00PM EDT. Market closed.

+ Add Indicator + Comparison 1d 5d 1m	3m 6m YTD 1y	2y 5y 10y Max 🛱 🗸	🕍 Area 🗸 🧿 Settings 🛛 🖞 Reset	
				125000.00
VXX 5992.96 Open 5478.40 Close 5992.96 Low 5391.36 High 6394.88 Vol 684.80K % Chg -94.40%	All data, split ac VXX underwent	djusted five 4:1 reverse splits since	inception	10000.00
				75000.00
	F	HOO!		50000.00
			Huge volume	_
Flash crash				25000.00
Feb 2009	/ downgrade	2013	2015	5992.96 2017

Taking a closer look, last 2 1/2 years

iPath S&P 500 VIX ST Futures ETN (VXX) 42.82 -0.78 (-1.79%) As of September 15 4:00PM EDT. Market closed

+ Add Indicator + Comparison \boxminus 🕍 Area 🗸 🧿 Settings 1d ර Reset 5d 1m 3m 6m YTD 5y 10y Max 1y 2y 100.00 XIV 13.89 korea Open 14.31 90.00 **89.61** Close 13.89 Low 13.33 High 14.43 80.00 Vol 41.11M % Chg 25.80% le pen 70.00 60.00 china 50.00 trump 40.00 brexit 30.00 20.00 13.89 10.00 10111 5.00M 2011 Aug 27 '12 2013 2015 2017

Velocity Shares Daily Inverse VIX ST ETN (XIV) 89.61 +1.69 (1.92%) As of September 15 4:00PM EDT. Market closed.

Modeling CMF curve dynamics

- VIX ETNs are exposed to (i) volatility of VIX (ii) slope of the CMF curve
- We propose a stochastic model and estimate it.
- 1-factor model is not sufficient to capture observed ``partial backwardation'' and ``bursts''
 of volatility
- Parsimony suggests a 2-factor model
- Assume mean-reversion to investigate the stationarity assumptions
- Sacrifice other ``stylized facts'' (fancy vol-of-vol) to obtain analytically tractable formulas.

Classic' log-normal 2-factor model for VIX

 $VIX_t = exp(X_{1t} + X_{2t})$

 $dX_1 = \sigma_1 dW_1 + k_1 (\mu_1 - X_1) dt$

 $dX_2 = \sigma_2 dW_2 + k_2 (\mu_2 - X_2) dt$

 $dW_1 \, dW_2 = \rho \, dt$

 X_1 = factor driving mostly VIX or short-term futures fluctuations (slow)

 X_2 = factor driving mostly CMF slope fluctuations (fast)

These factors should be positively correlated.

Constant Maturity Futures

 $V^{\tau} = E^{Q} \{ VIX_{\tau} \} = E^{Q} \{ exp(X_{1\tau} + X_{2\tau}) \}$

Ensuring no-arbitrage between Futures, Q = ``pricing measure'' with MPR

$$V^{\tau} = V^{\infty} \exp\left[e^{-\bar{k}_{1}\tau}(X_{1} - \bar{\mu}_{1}) + e^{-\bar{k}_{2}\tau}(X_{2} - \bar{\mu}_{2}) - \frac{1}{2}\sum_{ji=1}^{2}\frac{e^{-\bar{k}_{i}\tau}e^{-\bar{k}_{j}\tau}}{\bar{k}_{i} + \bar{k}_{j}}\sigma_{i}\sigma_{j}\rho_{ij}\right]$$

`Overline parameters' correspond to assuming a linear market price of risk, which makes the risk factors X distributed like OU processes under Q, with ``renormalized'' parameters.

Estimating the model means finding $k_1, \mu_1, k_2, \mu_2, \overline{k}_1, \overline{\mu}_1, \overline{k}_2, \overline{\mu}_2, \sigma_1, \sigma_2, \rho, V^{\infty}$ using historical data

Estimating the model, 2011-2016 (post 2008)

• Kalman filtering approach

Estimated Θ

Input data: 2/2011 to 12/2016, with VIX and CMFs 1m to 7m.

$\bar{\mu}_1$	3.8103	μ_1	3.2957
$\bar{\mu}_2$	-0.7212	μ_2	-0.7588
$\bar{\kappa}_1$	1.1933	κ_1	0.4065
$\bar{\kappa}_2$	10.8757	κ_2	13.1019
σ_1	0.6776		
σ_2	0.8577		
ρ	0.4462		

Estimated Θ

Input data: 2/2011 to 12/2016, with VIX, 3m and 6m CMFs.

$\bar{\mu}_1$	3.8094	μ_1	3.2524
$\bar{\mu}_2$	-0.7100	μ_2	-0.7155
$\bar{\kappa}_1$	1.0215	κ_1	0.3219
$\bar{\kappa}_2$	10.8739	κ_2	13.0799
σ_1	0.5931		
σ_2	0.9066		
ρ	0.4266		

Estimating the model, 2007 to 2016 (contains 2008)

Estimated Θ Input data: 7/2007 to 7/2016, with VIX and CMFs 1m to 6m.

$\bar{\mu}_1$	-6.6216	μ_1	-7.1367
$\bar{\mu}_2$	9.7372	μ_2	9.7608
$\bar{\kappa}_1$	0.6543	κ_1	0.2010
$\bar{\kappa}_2$	5.9052	κ_2	5.9389
σ_1	0.5525		
σ_2	0.9802		
ρ	0.6015		

Estimated Θ Input data: 7/2007 to 7/2016, with VIX, 1m and 6m CMFs.

$\bar{\mu}_1$	2.4581	μ_1	1.8685
$\bar{\mu}_2$	0.8002	μ_2	0.7555
$\overline{\kappa}_1$	0.5505	κ_1	0.1081
$\overline{\kappa}_2$	10.0013	κ_2	12.3600
σ_1	0.4294	 	
σ_2	0.7998		
ρ	0.5073		

Stochastic differential equations for ETNs (e.g. VXX)

$$\frac{dI}{I} = r \, dt + \frac{dV_t^{\theta}}{V_t^{\theta}} - \frac{\partial \ln V_t^{\tau}}{\partial \tau} \bigg|_{\tau=\theta} \, dt$$

Substituting closed-form solution in the ETN index equation we get:

$$\frac{dI}{I} = r \, dt + \sum_{i=1}^{2} e^{-\bar{k}_{i}\theta} \sigma_{i} dW_{i} + \sum_{i=1}^{2} e^{-\bar{k}_{i}\theta} \left[\left(\bar{k}_{i} - k_{i} \right) X_{i} + \left(k_{i}\mu_{i} - \bar{k}_{i}\bar{\mu}_{i} \right) \right] dt$$

Equilibrium local drift =
$$\sum_{i=1}^{2} e^{-\bar{k}_{i}\theta} \left[\bar{k}_{i}(\mu_{i} - \bar{\mu}_{i}) \right] + r \qquad \sigma_{I}^{2} = \sum_{j=1}^{2} e^{-\bar{k}_{i}\tau} e^{-\bar{k}_{j}\tau} \sigma_{i}\sigma_{j}\rho_{i}$$

Results of the Numerical Estimation for VIX ETNs: Model's prediction of profitability for short VXX/long XIV, in equilibrium

	Jul 07 to Jul 16	Jul 07 to Jul 16	Feb 11 to Dec 16	Feb 11 to Jul 16
	VIX, CMF 1M to 6M	VIX, 1M, 6M	VIX, CMF 1M to 7M	VIX, 3M, 6M
Excess Return	0.30	0.32	0.56	0.53
Volatility	1.00	0.65	0.82	0.77
Sharpe ratio (short trade)	0.29	0.50	0.68	0.68

Notes :

(1) For shorting VXX one should reduce the ``excess return'' by the average borrowing cost which is 3%. It is therefore better to be long XIV (note however that XIV is less liquid, but trading volumes in XIV are increasing.

(2) Realized Sharpe ratios are higher. For instance the Sharpe ratio for Short VXX (with 3% borrow) from Feb 11 To May 2017 is 0.90. This can be explained by low realized volatility in VIX and the fact that the model predicts significant fluctuations in P/L over finite time-windows.

Variability of rolling futures strategies predicted by model (static ETN strategies).

Model also applies to dynamic assetallocation

 Assuming HARA (power-law), Merton's problem reduces to solving Linear-quadratic Hamilton Jacobi Bellman equation, which has an explicit solution.

Conclusion : Trading strategies should be `learnt' from the (i) slope of the curve AND (ii) the VIX level.

Happy birthday Jim!